Boundedness of fractional integrals on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes
نویسندگان
چکیده
Let $$p\in [1,\infty ]$$ , $$q\in )$$ $$s\in \mathbb {Z}_+:=\mathbb {N}\cup \{0\}$$ $$\alpha \in {R}$$ and $$\beta (0,1)$$ . In this article, the authors first find a reasonable version $$\widetilde{I}_{\beta }$$ of (generalized) fractional integral $$I_{\beta on special John–Nirenberg–Campanato space via congruent cubes, $$JN_{(p,q,s)_{\alpha }}^{\textrm{con}}(\mathbb {R}^n)$$ which coincides with Campanato $$\mathcal {C}_{\alpha ,q,s}(\mathbb when $$p=\infty $$ To end, introduce vanishing moments up to order s Then prove that is bounded from $$JN_{(p,q,s)_\alpha }^{\textrm{con}}(\mathbb +\beta /n}}^{\textrm{con}}(\mathbb if only has s. The obtained result new even {N}$$ namely, space. Moreover, show can be extended unique continuous linear operator Hardy-kind $$HK_{(p,q,s)_{\alpha predual $$JN_{(p',q',s)_{\alpha $$\frac{1}{p}+\frac{1}{p'}=1=\frac{1}{q}+\frac{1}{q'}$$ proof latter boundedness strongly depends dual relation $$(HK_{(p,q,s)_{\alpha {R}^n))^{*} =JN_{(p',q',s)_{\alpha good properties molecules crucial criterion for operators
منابع مشابه
Boundedness of Singular Integrals in Weighted Anisotropic Product Hardy Spaces
Let Ai for i = 1, 2 be an expansive dilation, respectively, on R n and R and ~ A ≡ (A1, A2). Denote by A∞(R × R; ~ A) the class of Muckenhoupt weights associated with ~ A. The authors introduce a class of anisotropic singular integrals on R×R, whose kernels are adapted to ~ A in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors est...
متن کاملBoundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
Let [Formula: see text] satisfy that [Formula: see text], for any given [Formula: see text], is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text]. The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of all tempered distributions such that their grand maximal functions belong to the Musielak-Orlicz spa...
متن کاملBoundedness on Hardy-Sobolev Spaces for Hypersingular Marcinkiewicz Integrals with Variable Kernels
متن کامل
Atomic Decomposition and Boundedness Criterion of Operators on Multi-parameter Hardy Spaces of Homogeneous Type
The main purpose of this paper is to derive a new (p, q)-atomic decomposition on the multi-parameter Hardy space H(X1 ×X2) for 0 < p0 < p ≤ 1 for some p0 and all 1 < q < ∞, where X1 × X2 is the product of two spaces of homogeneous type in the sense of Coifman and Weiss. This decomposition converges in both L(X1 × X2) (for 1 < q < ∞) and Hardy space H(X1 × X2) (for 0 < p ≤ 1). As an application,...
متن کاملBoundedness for Multilinear Marcinkiewicz Operators on Certain Hardy Spaces
The boundedness for the multilinear Marcinkiewicz operators on certain Hardy and Herz-Hardy spaces are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Calculus and Applied Analysis
سال: 2022
ISSN: ['1311-0454', '1314-2224']
DOI: https://doi.org/10.1007/s13540-022-00095-3